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A ffmite element method in Cartesian coordinates in three dimensions is described to solve 
the time-dependent Schr6dinger equation for H + in the presence of time-dependent electro- 
magnetic fields. The ionization rates, nonlinear optical polarizabilities and harmonic genera- 
tion spectrum of H + have been calculated for field directions parallel or perpendicular to the 
hydrogen molecule ion axis. Comparisons of the present numerical results with previously pub- 
lished calculations show that the finite element method reproduces perturbative results and 
can treat nonperturbativity arbitrary intense short pulses as it includes automatically both 
bound and continuum electronic states. 

1. In troduct ion  

The interaction of  intense external fields (intensity i> 1012 W / c m  2) with a toms 
and molecules leads to many  interesting mul t iphoton phenomena such as above- 
threshold ionization and high-order harmonic  generation. This has been an area of  
active research in the past decade [1-8]. The topic is a challenge for theoreticians 
since per turbat ion theories usually used are not  valid for high intensity laser pulses 
[1,3]. Since the atomic unit of  the electronic field e/a~ corresponds to a field inten- 
sity of  3.5 x 1016 W / c m  2, current  fields approaching 1014 W / c m  2 will introduce 
nonperturbat ive effects such as above threshold ionization [9] and laser-induced 
avoided crossings of  molecular electronic potential curves [10,11]. In most  experi- 
ments the electric-field amplitude can vary considerably on a scale of  several cycles 
during the turn on of  the pulse. Therefore,  it is necessary to describe these high- 
intensity phenomena  by solving numerically the t ime-dependent  Schr6dinger equa- 
tion (TDSE). Previous theoretical papers published so far have used coordinates 
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in one or two dimensions or reduced the molecule-field system to the lower dimen- 
sion by use of spherical, cylindrical or prolate-spheroidal coordinates in numerical 
solutions of TDSE [4-8,12-16]. 

One of the fundamental difficulties for describing nonperturbative time-depen- 
dent phenomena is the proper inclusion simultaneously of bound and continuum 
electronic states. In the case of the H atom, successful numerical calculations have 
been carried out by solving the TDSE using implicit finite difference (FD) methods 
in view of the local nature of the potential in the problem [4,8]. Extension of these 
numerical methods to multielectron problems has proved to be difficult due to the 
nonlocal nature of the exchange interaction. 

Another approach which can handle nonlocal potentials is a basis set expan- 
sion, with sufficient flexibility to enable one to span localized bound state functions 
to highly delocalized free electron functions. Such flexible basis sets can be found 
in finite element (FE) methods which are local in nature. It is well known that sim- 
ple FD and FE methods result often in identical approximations [17,18]. Recent 
applications of FE methods to time independent quantum chemistry has shown 
that these methods are well suited to treating nonlocal potentials such as the 
exchange potential in Hartree-Fock (HF) methods for atoms [19,20] and recently 
molecules [20-23]. In particular, taking advantage of expansion in terms of 
Legendre polynomials onto elements, one can obtain high accuracy due to the opti- 
mal properties of these polynomials: Legendre polynomials are the best approxi- 
mation of any function with respect to its norm in a finite domain [24]. We have 
used such expansions in preliminary calculations of the time-dependent solution of 
the H and He atoms excited by an intense short laser pulse [12,13]. These calcula- 
tions have been shown to compare extremely well with previous FD methods. The 
latter calculations are basis set free, whereas the FE method involves local basis 
sets. Current developments in time-independent basis-free quantum chemistry 
have shown these to be very promising [25,26], but have not yet been developped 
for time-dependent problems. In the present paper we describe the local basis FE 
method in Cartesian coordinates in 3 dimensions as applied to the solution of the 
TDSE for the hydrogen molecular ion in the presence of time-dependent electro- 
magnetic perturbations. The Cartesian coordinates have the advantage of treating 
fields of arbitrary polarization. We are currently extending the method to the H2 
molecule and the H + molecular ion. 

2. Theory  

Clementi and collaborators [23] presented a FE method which they used for 
time-independent SCF calculations in Cartesian coordinates in three dimensions. 
We have rewritten this program using the K G N F L O W  program from 
MOTECC90 [27] as a starting point for time-independent systems and extended it 
to time-dependent problems which allows one to efficiently manipulate large 
matrices. 
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2.1. TIME-INDEPENDENT EQUATIONS 

The hydrogen molecular ion Schr6dinger equation is of  the form 

H # = E 4 ) ,  (1) 

where #, the molecular orbitals of H +, are expanded in a FE basis set, 

= F ,  c,x,. (2) 
i 

{C/} and {Xi} are the coefficient vector of the wave function and basis vector, 
respectively. The system Hamiltonian H is of the form 

1 
H = ho + Ra----bb' (3) 

Rab is the distance between the two nuclei and h0 is a single-electron Hamiltonian,  

h0 = - 1 1 1 V 2 
ra r b ' (4) 

1 

r~(b) = z + ( - )  +x2 + y2 . (5) 

The variation of total energy E in eq. (1) with respect to the one-electron wave 
function leads to the SCF equations 

F C  = E S C ,  (6) 

where C is the coefficient vector, F = X+h0X is the Hamiltonian matrix and 
S = X+X is the overlap matrix of the FE basis set. 

Equation (6) is a generalized nonlinear eigenvalue equation. It can be solved by 
a SCF method.  When Cartesian coordinates in three dimensions are used to solve 
the equation, the traditional finite element methods cannot be applied due to enor- 
mous storage and computing demands [23]. However we can use a block Lanczos 
method [28] to circumvent this problem. First, eq. (6) is t ransformed by left multi- 
plication with S-1/2, and a new matrix equation is obtained, 

A Y  = E Y ,  (7) 

where A = S-1/2FS -1/2 and 

Y = s l / 2 c .  (8) 

It is impossible to get the inverse of the overlap matrix S since the length of  of  
the coefficient vector C in eq. (6) is usually greater than 10 4. We therefore introduce 
a high order approximation by use of Lobat to-Gauss  basis sets, which are 
Lagrange interpolants on the set of k abscissas, of the k-point Lobat to-Gauss  
quadrature formula 
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k 
b j ( k , w )  = I - I  ( w - w i )  

,=l,i#j ~J  - ~i)"  (9) 

k is the polynomial order. Lobatto-Gauss basis sets have the orthonormal 
property 

bj(k ,  wi) =50-. (10) 

Therefore the overlap matrix S can be approximated in this basis set by a vector 
which is only composed of diagonal terms of the overlap matrix S. Previous calcula- 
tions show this approximation is very accurate in obtaining eigenvalues [23]. 

2.2. SINGULARITY IN NUCLEAR POTENTIAL 

One difficulty in implementing FE methods for molecules, such as H +, is the 
Coulomb potential at the location of the nuclei. If the nuclei are placed inside of the 
element, it is very difficult to remove the singularity. Therefore nuclei are always 
placed at the corner of the singular element. Clementi and collaborators [23] have 
presented a method in which a singular element is divided into three tetrahedra to 
remove the singularity. We have modified this method by using Duffy's method 
[29] as it leads to easier numerics. 

The matrix elements of the nuclear potential we want to calculate in Cartesian 
coordinates in three dimensions are of the form 

f l f l f  1 Vij = bil bnbi3F(x, y ,  z )b j l  bj3bj3 dx1 dx2 dx3, (11) 
1 1 1 

where bio')n(n = 1, 2, 3) is the Lobatto-Gauss basis set, which are functions of the 
local coordinates xn. Each bio)n is defined by eq. (9). The Coulomb potential 
F ( x ,  y ,  z)  is a function of the global coordinates x, y, z and is of the form 

F ( x , y , z )  = [x 2 + y2 + 2,2]-1/2. (12) 

A relationship between local and global coordinates in the Cartesian coordinates 
in 3 dimensions is easily found, 

X = Cl + a l x l ,  y = c2 + a2x2, z = c3 + a3x3 , (13) 

where ci(i = 1, 2, 3) is the midpoint coordinate of the ith edge in the element consid- 
ered, and ai(i  = 1, 2, 3) is the half length of the ith edge. If the singular element is 
selected as a cube, then al = aa = a3 = a, therefore, 

x = Cl + a x l ,  y = c2 + ax2, z = c3 + ax3 .  (14) 

With the substitution 

X l l = X l + l ,  x z 2 = x 2 + l ,  x 3 3 = x 3 + l ,  (15) 

eq. (11) becomes 
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io io io V• = dXll dXl2 dx33 bil bi2bi3F(x,  Y, z)bjl bj32bj3. (16) 

This is an integral over a cube with an edge length of 2 and with a singularity at 
one of its comers. Now we divide this cube into 3 similar regions of which each 
region is a square bases pyramid, having one vertex at the origin and having one of 
the 3 opposite faces of the cube as a base. For the sake of simplicity, given that 

f (X l  1, X22, X33) -- bil bt2bi3F(x,  Y, z)bjl bj3bj3, (17) 

eq. (16) can be written as the sum of 3 integrals: 

io lX,,io x,, Vii. -~- dXll dx22 d x 3 3 f ( X l l  , X22, X33) 
J0 

Jr- dx22 dx33 dXl l f (X l l ,  x22, x33 ) 
dO dO 

; TM 

n t- dx33 dXll dx22f(xl  1 , x22 , x33 ) . (18) 
J0 JO 

Relabelling the variables in the latter two integrals in above equation, we have 

Vij = dXll dx22 dx33 Z f .  , (19) 
J0 J0 i=1 

wherej~'s are cyclic permutations, 

3 
Z j~ = f(Xll,  x22, x33) +f(x22, x33, Xll) +f(x33, x22, Xll)- (20) 
i=1 

Changing variables, 

X22 = 1XllU, X33 = ½XllW, (21) 

eq. (19) becomes 

/o S/ Vii = dXll du dw~l ( f l  +f2 +f3)- 

Changing the variables again, 

r = X l l - 1 ,  s = u - 1 ,  t = w - 1 ,  

we obtain 

VO. , 1 =  dr 1 ds 1 dt(r+l)2OCl+f2+f3)=ZPi'i 

where 

(22) 

(23) 

(24) 
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1/1/,/, 
e i  = "~ 1 dr I ds 1 dt(r  + 1)2f • . (25) 

When the nuclei are placed at the corner of an element, we can always per form 
a t ransformat ion  such that  Cl = c2 = c3 = a. Therefore we obtain f rom the above 
equations 

2 [4 + (s + 1) 2 F -- a(r + 1-------~ + (t + 1)2] -1 /2  . (26) 

Putt ing eq. (26) into eq. (25), we obtain 1/_' /' /_' 
Pi =~aa 1 dr 1 ds 1 d t ( r +  1)bilbi2b,3bjlbj3bj3[4+(s+ 1) 2 + ( t +  1)2] -1/2 

(27) 

where 

bi(j),=bio')n(r, ½ ( r + l ) ( s + l ) - I  ! ( r + l ) ( t + l ) - l ) ,  ( n = 1 , 2 , 3 )  (28) ~2 

There is now no singularity in eq. (27) and Pi is easy to calculate. We thus can use 
the same matr ix-vector  multiple procedures as in the previous application [23], to 
avoid the storage of  any matr ix  as we do in a nonsingular element. The nuclei m a y  
be placed at any corner  of  the singular element. The above method  is valid as long 
as the nuclei are placed at the comer .  When a midpoint  coordinate  ci(i = 1, 2, 3) 
values is less than 0, we need only to change the corresponding coordinate  sign in 

bio')n. 
In table 1 we present some orbital energies and total energy of  the ground state 

of  H~- using the present method,  with 324 elements, 27 × 27 × 41 degrees o f  free- 
dom, and a box size = -t-6, 4-6, 4-8 au in the directions of  x,y,  and z, respectively. 
The results in table 1, when compared  with previous noncartesian FE calculations 
on H + [23,30] show excellent agreement.  The analytical solution for H + is known: 
the ground state at equilibrium is 1crg and the total energy [30] is -0 .6026 au. When  
the highest order of  polynomial  in each basis set is of  6 (in this paper),  the total 
energy is -0 .6023 au. When the order  of  polynomial  is increased to 7 [31], the total  
energy is given by -0.6025 au, thus indicating convergence. 

Table 1 
Calculated energies for H + at R = 1.9972 au. 

States E (au) Previous work (au) a) Exact value (au) b) 

~gls --1.10297369 --1.10296601 
~u IS --0.66700430 --0.66689090 
rCu2p --0.42830026 --0.42348863 
Total ground state energy - 0 . 6 0 2 2 7 6 0 6  -0.60226503 -0.6026 

a) Ref. [23]. 
a) Ref. [30]. 
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2.3. TIME-DEPENDENT EQUATIONS 

The time-dependent Schr6dinger equation (TDSE) for H~- is of the form [5] 

1~" 0 ~P(r, t) = (ho + VeX)~p(r, t) --- H(r,t)~P(r,t) , (29) 

where ho is the Hamiltonian for the time-independent system, studied in the pre- 
vious section and the ~P(r, t) are the time-dependent orbitals, which we express as 

gZ(r,t)--- X(r)C(t),  (30) 

where X(r) is the time-independent FE basis set matrix and C(t) is the time-depen- 
dent coefficient vector. For linearly polarized laser fields and using Cartesian coor- 
dinates in three dimensions, the external electromagnetic perturbation V ex will be 
written as 

V ex = Eo (t)z sin(wt), (31) 

if the external laser field is parallel to the hydrogen molecule ion axis (z), or as 

V ex = Eo(t)y sin(wt), (32) 

if the external laser field is perpendicular to that axis. Eo(t) is called the pulse 
envelope for an electromagnetic field of frequency w and both expressions (31) and 
(32) are written in the dipole approximation [3], i.e. the field has no spatial 
dependence. 

Substituting eq. (30) into eq. (29), we readily obtain 

iOff  r = iXC = H ~  ----- H X C .  (33) 

Multiplying eq. (33) from the left by X + and defining 

B = S-1X+HX, (34) 

we get finally the simple time-dependent matrix differential equation, 

iC = BC,  (35) 

where S -1 is the inverse of the overlap matrix (see eq. (6)). 
The reduced equation (35) needs to be propagated from some initial time t = 0 

to some final time t after we get the initial coefficient vector C(0) from eq. (6). 
Because the total Hamiltonian matrix has large dimensions, it is impractical to use 
a diagonalization procedure [5,32] to propagate eq. (35). As we did for H and He 
[12,13], the time-dependent coefficient vector C(t) is propagated successively by a 
fourth order Taylor series expansion from time nat  to (n + 1)At, 

cn+l = ( l  - iAtB - At2B2 + i~.At3B3 + l  At4B4)Cn.  (36) 

This involves multiplication of matrices only. The final wave function after a time 



294 H. Yu et al. / The finite element method. H 

t, ~P(r, t, E(t) )  becomes an exact implicit function of  the electromagnetic field E(t )  
and is next used to calculate the exact field induced polarizability. In all calcula- 
tions, an absorbing potential is used to avoid the reflections of  the wave function 
propagated  f rom the edges of  the box. Such absorption removes ionizing electrons 
and allows for calculating ionization rates [5]. The propagat ion scheme (36) is 
always checked for convergence and normalizat ion by choosing appropriate  small 
time steps. 

3. Resu l t s  a n d  discuss ion 

In our previous work [12,13], we showed that the FE basis successfully gave 
highly accurate ionization rates and hyperpolarizabilities for the H and He atoms. 
In all our calculations for H f ,  the center of  the hydrogen molecular  ion is placed 
in the center of  a rectangular  box. The sizes of  the rectangular box are 24, 24, 60 and 
30, 60, 24 au in x, y and z directions for fields E(t)  parallel (z) and perpendicular  
(y) to the axis of  H +, respectively. The box is divided into 144 elements and 8959 
basis functions are used to propagate  for the parallel field case, and 160 elements 
and 9639 basis functions for the perpendicular  case. One laser field cycle is discre- 
tized in time with n = 103 points (~- = 2~/w,  AT = T/103). 

3.1. IONIZATION RATES 

At the beginning of  propagat ion (t = 0), the probabilities of  occupancy of  the 
1 s state is equal to 1 and the probabilities of  all other states are equal to 0. Electrons 
are excited f rom the 1 s state to other states of  high energy while the wave functions 
are propagated.  Therefore ionization rates can be calculated f rom the decrease of  
the probabilities of  occupancy of  the 1 s state. These are calculated for long time 
using the formula  - lnP(t) = F, where P(t)  is the time dependent  probabil i ty of  the 
initial state. 

The H + ionization rates F obtained for various intensities and field directions 
(z and y) are reported in table 2 together  with other known results based on F D  
methods  [5]. Both FD and FE results agree very well for the laser pulses parallel to 
the axis of  the hydrogen molecular  ion, i.e. the z-axis. 

The variat ion of  probabilities of  the initial 1Crg state with time are given in figs. 

Table 2 
Ionization rates/" ofH + at R = 1.9972 au for various intensities I (frequency w = 0.0856 au). 

I (W/cm 2) F. (s -I) r .  (s -1) /~r (s-I) 
this paper previous work a) this paper 

5 × 1014 1.3 x 1012 1.4 × 1012 3.9 × 10 I1 
1015 4.5 x 1013 4.6 × 1013 1.2 x 10 l~ 

~) Ref, [5], box size: d = 64 au. 
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Fig. 1. Probabilit ies of ground s t a t e  a s  a function of time for directions perpendicular (y) and parallel 
(z) to the H + axis: I = 5 x 10 TM W / c m  2, frequency w = 0.0856 au. (1 optical cycle = 1.8 x 10 -15 s.) 

1 and 2 for the laser intensities 5.0 x 1014 and 1.0 x 1015 W/cm 2, respectively. It 
can be seen from these two figures that the slopes and amplitudes of oscillation of 
the probabilities of  the l¢rg state are clearly different at the same laser frequencies 
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and intensities but for different directions: parallel (z) and perpendicular (y) to 
the molecular axis. When the laser field is parallel to the axis of H +, the wave func- 
tion expands with time along the molecular axis, z, whereas when the laser field is 
perpendicular, the wave function expands perpendicular to that  axis. F rom both 
figs. 1 and 2, we infer that the interaction of  the laser pulses with the hydrogen mole- 
cular ion are stronger in the direction parallel to the axis of H + than in the perpendi- 
cular direction due to the large extension of the wave function in the z-direction. 
This phenomena can be also seen from the electronic dipole moments ,  d ( t )  = (kv( t )  

[d[kV(t)), where d = z or y are different directions shown in fig. 3. For  the same 
laser intensity 5 x 1013 W / c m  2 and frequency 0.0856 au, the induced dipole 
moments  parallel to z (H + axis) are larger than those perpendicular (y) to that  axis. 
This correlates well with the different ionization rates (table 2) in the two direc- 
tions. Both ionization rates and dipole moments  perpendicular (y) to the internuc- 
lear axis (z) are reported here for the first time. 

3.2. POLARIZABILITIES 

When a molecule is exposed to the laser field, a complicated polarization takes 
place. The cloud of  the electronic charge is deformed to accommodate  the external 
field so that the molecule, even though symmetric, acquires an induced dipole 
moment  and polarizabilities. However, the calculations of  polarizabilities are 
much more difficult than those of ionization rates since the former demands not  
only more calculations as a function of  field amplitude but also more precision. 

0.2 

0.1 

~- o.o 

-0 .1  

- 0 . 2  

0 2 4 6 8 10 

TIME (CYCLES) 

Fig. 3. Comparison of the perpendicular (y) to the parallel (z) dipole moment at the intensity 
/ = 5 × 1013 W/cm 2 and frequencyw = 0.0856 au. 
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Most  previous calculations ofpolarizabilities of  atoms and small molecules, gen- 
erally rely on t ime-independent  iterations or perturbations,  for example H [33,34], 
He [35,36], noble gases [37-39], alkali metals [40] and small molecules [41-43]. 
Here we present the first result of  calculations based on numerical  solutions of  the 
TDSE,  using FE basis sets in Cartesian coordinates in 3 dimensions. 

The electronic polarizabilities of  the hydrogen molecular  ion have been calcu- 
lated previously [42-48], but  the results contradict  each other. For  example, Bishop 
and collaborators [46,47] have calculated the value of  711 = 41 au and Adamowicz  
and collaborators [43] obtained a value of  5'11 = 2300 au. We follow our previous 
me thod  [ 13] for H and He to calculate these in Cartesian coordinates in 3 dimensions. 

In general, the electronic polarizability or dipole momen t  induced in an a tom 
or molecule by a uniform external field E ( t )  can be expressed in a power series 
expansion [49], 

d( t )  OP(t ) ld l~P(t ) )  a E ( t )  5" 3 = = + ~ . E ( t )  + . . . .  (37) 

The range of  the intensity of  the laser pulses used to calculate the polarizabilities 
varies f rom 1013 to 1014 W / c m  2 for both the frequencies w =  0.0856 and 
w = 0.0428 au and for the two directions: z and y. In the parallel case (z direction), 
8 intensities are used and 1500 points per cycle for each intensity are collected. In 
the perpendicular  case (y), 6 intensities and the same number  of  points are used. 
The results calculated have been checked for convergence. The present results and 
previous published results are given in table 3. It can be seen f rom table 3 that  our 
results are very close to those calculated by Bishop and collaborators [46], in both  
parallel and perpendicular directions. We note that  most  previous published results 
are static results, i.e. w = 0. All our results are dynamic  (w ~ 0). 

Table 3 
Hyperpolarizabilities of the hydrogen molecular ion (units: au) at R = 1.9972 au. 

w all c~± 711 7± 

0.0428 5.13 1.82 -44.4 80.0 
0.0856 5.29 1.84 -70.0 106.0 

Previous results 
0.01 5.84 a) -193 ~) 
0.0 5.84 b) 2300 b) 
0.0 5.078 d) 1.758 d) --40.9 c) 
0.0 5.199 f) 1.829 f) 

83.8 e) 
73.04 e) 

~) Ref. [42], averaged over the vibrational ground state. 
b) Ref. [43]. 
c) Ref. [44]. 
d) Ref. [45]. 
~) Ref. [46,47]. 
0 Ref. [48]. 
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3.3. H A R M O N I C  G E N E R A T I O N  

In a very intense laser pulse, an atom or molecule can radiate at multiples or har- 
monics of the incident laser frequency. This process which is usually called optical 
harmonic generation has been observed experimentally and calculated by FD 
methods for atoms only [4]. We present for the first time the harmonic generation 
spectrum of H + for both field polarizations, z and y. These are nonperturbative 
results which can only be obtained by the present method. 

Harmonic generation spectra are given for the laser intensity 5 x 1014 W/cm 2 
and frequency 0.0856 au in figs. 4 and 5 for parallel (z) and perpendicular (y) direc- 
tions, respectively. These spectra are defined from the power spectrum 

, d (w)[2  = f ~  ei~'d(t)dt 2 . (38 )  

The intensity of the laser light increases from 0 to a maximum during the first 
optical cycle, and is then kept constant. The results shown in figs. 4 and 5 are 
obtained for a time of 5-20 optical cycles. Each figure reveals a series of peaks at 
odd multiples of the laser frequency, extending to at least the 45th harmonic. If  we 
compare the harmonic spectra in fig. 4 with those in fig. 5, it can be seen that the 
intensities of the harmonic spectra with the laser field parallel to the axis (z) of H + 
are stronger than those with the laser field perpendicular (y) to that axis, by about 
one order of magnitude. This is in agreement with the calculations of the dipole 
moments, fig. 4. In fact, experiments measuring angular distributions of protons 

I t I I I 
Z 
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- 4  

- 6  

- 8  

- 1 0  

- 1 2  

- 1 4  

ta0 
O 

I I 

0 I 0 20 30 40 50 60 

HARMONIC ORDER 

Fig. 4. Harmonic  spectra of the hydrogen molecular  ion with the laser field paral lel  (z) to molecule 
axis at  the intensity I = 5 x 1014 W / c m  2 and frequency w = 0.0856 au. 
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Fig. 5. Harmonic spectra of the hydrogen molecular ion with the laser field perpendicular ~) to the 
molecule axis at the intensity I = 5 × 1014 W/cm 2 and frequency w = 0.0856 au. 

emitted during the mul t iphoton ionization of  the H2 molecule show that the pro- 
tons are always tightly focused along the polarization axis of  the laser field [9]. This 
means that  the molecule absorbs photons most  efficiently when it is aligned with 
the external field. This is a result of large charge transfer transitions such as 
l~g ~ 1 ~u for which the transition moment  diverges as R / 2  [3,10,11]. Our calcu- 
lated results are in agreement with this fact. It is interesting to note that  harmonic  
spectra in the perpendicular (y) direction in fig. 5 show us also an initial sharp drop- 
off intensity, followed by a rather broad plateau, and then a sudden cut-off. These 
features are characteristic of  atomic optical harmonic spectra, both theoretical 
[4,15] and experimental [50,51 ]. We further note that 7± > ~'11 is in agreement with 
figs. 4 and 5 where the third harmonic is weaker for parallel polarization than the 
other harmonics.  

4. Conc lus ions  

The ionization rates, nonlinear optical polarizabilities and harmonic  generation 
spectra of  H2 + in Cartesian coordinates in 3 dimensions have been calculated non- 
perturbatively using FE methods for field directions parallel and perpendicular to 
the hydrogen molecule ion axis. We present for the first time nonperturbative ioni- 
zation rates for excitations perpendicular to the molecular axis. The results 
obtained here, including those previously calculated for H and He atoms [12,13] 
show that FE basis sets which are local in nature are ideally suited to treat nonper- 
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turbat ive t ime-dependent  problems for t ime-dependent  per turbat ions  which lead 
to high excitations into Rydberg  and cont inuum states. Our  numerical  calculations 
of  low order hyperpolarizabilit ies agree well with previous per turbat ive calcula- 
tions and offer the possibility of  calculating high order ones since our  basis sets, 
which allow for calculation of  ionization rates, therefore implicitly contain conti- 
nuum state contributions.  We are currently extending the FE  method  to the time- 
dependent  quan tum mechanics of  the H2 and the H + ion. 

Our  calculations so far do not  include the mot ion  of  the nuclei. Ro ta t ion  is very 
slow on the time scale of  ionization so it can be neglected. But  vibrat ions of  the 
nuclei in the molecule should be taken into account,  f rom which vibrat ional  contri-  
but ions  to low order hyperpolarizabili t ies are expected [46]. This aspect  is being 
currently pursued in a nonper turbat ive  approach.  
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